Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 221: 118803, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809385

RESUMO

Crop production is the biggest water user and key contributor to anthropogenic greenhouse gas emissions. Increasing crop yields to ensure adequate food supply under water and land scarcity is excessively dependents on intensive agricultural inputs (such as fertilizers, pesticides, agri-films, or energy), resulting in unintended environmental consequences. Supply chains bringing environmental-intensive inputs from their place of production to the croplands. However, most food-related environmental assessments ignore the environmental burden of agricultural input production, trade, and consumption. Here, we estimate spatially-detailed water (WF) and carbon footprints (CF) of wheat, maize, and rice production in China with extended system boundary from upstream raw material mining to the field. The agricultural inputs account for up to 24% and 89% of a crop's WF and CF, respectively, at the provincial level. The total local generated WF in Chinese northern provinces and CF in Shanxi and Inner Mongolia provinces for producing crops and agricultural inputs transgresses the corresponding downscaled blue water and carbon planetary boundaries. The study broadens the scope of traditional environmental impact assessments in agricultural production and sheds light on the significances to manage the linkages between the crop production and the agricultural inputs' upstream supply chains towards more efficient water use and less greenhouse gas emissions in food system.


Assuntos
Pegada de Carbono , Gases de Efeito Estufa , Agricultura/métodos , China , Produção Agrícola , Fertilizantes , Água
3.
Sci Total Environ ; 756: 143992, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33302064

RESUMO

To evaluate the environmental sustainability of blue water use or the blue water footprint (WF) of a product, organisation, geographical entity or a diet, two well-established indicators are generally applied: water efficiency and blue water stress. In recent years, the Life Cycle Assessment (LCA) community has developed, used and promoted the indicator scarcity-weighted WF, which aims to grasp both blue water use and blue water stress in one indicator. This indicator is now recommended in an ISO document on water footprinting and many scholars have used associated scarcity-weighted water use indicators. However, questions on its physical meaning and its ability to correctly evaluate water sustainability have emerged. Here, we analyse for global irrigated wheat production to what extend the scarcity-weighted WF addresses blue water stress and water efficiency. We observe inconsistent results, as a significant proportion of unsustainably produced irrigated wheat has better scarcity-weighted WF scores as compared to sustainably produced irrigated wheat. Using the scarcity-weighted WF or scarcity-weighted water use for policy-making including product labelling, punishes some farmers producing their wheat in a water-sustainable way and promotes some farmers producing wheat unsustainably. Applying the scarcity-weighted WF indicator thereby is contraproductive in reaching the Sustainable Development Goal (SDG) target 6.4 on reducing water stress. In line with the specifications of this SDG target, to evaluate the sustainability of blue water use or the blue WF, the two indicators water stress and water efficiency should be used separately, in a complementary way.

5.
Glob Food Sec ; 24: 100357, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32190541

RESUMO

The EAT-Lancet universal healthy reference diet recommends an increase in the consumption of healthy foods, among which treenuts and groundnuts. Both are, however, water-intensive products, with a large water footprint (WF) per unit of mass and protein and already today contribute to blue water stress in different parts of the world. The envisaged massive required increase in nut production to feed a global population with this reference diet, needs to occur in a water-sustainable way. In this paper, we identify and quantify where current nut production contributes to local blue water stress and discuss options for water-sustainable nut production. We show that 74% of irrigated nuts are produced under blue water stress (of which 63% under severe water stress), throughout many regions of the world, most notably in India, China, Pakistan, the Middle East, the Mediterranean region and the USA. We critically evaluate which nut types to promote given substantial differences in WFs. We propose sustainable intensification of nut production employing nut-specific WF benchmarks. We also recommend integrated water resources management including maximum sustainable levels of water consumption by setting of WF caps.

6.
Nat Food ; 1(12): 792-800, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37128061

RESUMO

Increasing pressure on the world's freshwater resources raises serious concerns about global food security and the sustainability of water use in agriculture. Here we quantify and map at a 5-arcmin spatial resolution the blue water footprint of each country's national consumption and where they infringe sustainable environmental flows as defined by the presumptive environmental flow standard or the 80% rule, in which runoff depletion by more than 20% will pose risk to ecosystems. We find that 52% of the blue water footprint of global consumption and 43% of international blue virtual water flows come from places where the sustainable environmental flow is violated. About 22% of the environmental flow infringement of the blue water footprint of global consumption lies outside the specific countries of consumption, indicating that a number of them have externalized their impacts. By establishing a link between the consumption of a product in one place and water scarcity in places far from the place of consumption, our assessment may aid a dialogue on how to assign and share responsibilities concerning water use.

7.
Environ Int ; 132: 105084, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31415964

RESUMO

Global demand for livestock products is rising, resulting in a growing demand for feed and potentially burdening freshwater resources to produce this feed. To offset this increased pressure on water resources, the environmental performance of livestock sector should continue to improve. Over the last few decades, product output per animal and feedstuff yields in the US have improved, but before now it was unclear to what extent these improvements influenced the water productivity (WP) of the livestock products. In this research, we estimate changes in WP of animal products from 1960 to 2016. We consider feed conversion ratios (dry matter intake per head divided by product output per head), feed composition per animal category, and estimated the water footprint of livestock production following the Water Footprint Network's Water Footprint Assessment methodology. The current WP of all livestock products appears to be much better than in 1960. The observed improvements in WPs are due to a number of factors, including increases in livestock productivity, feed conversion ratios and feed crop yields, the latter one reducing the water footprint of feed inputs. Monogastric animals (poultry and swine) have a high feed-use efficiency compared to ruminants (cattle), but ruminants consume relatively large portion of feed that is non-edible for humans. Per unit of energy content, milk has the largest WP followed by chicken and pork. Per gram of protein, poultry products (chicken meat, egg and turkey meat) have the largest WP, followed by cattle milk and pork. Beef has the smallest WP. These data provide important information that may aid the development of strategies to improve WP of the livestock sector.


Assuntos
Agricultura/história , Conservação dos Recursos Hídricos , Gado , Carne , Leite , Água , Ração Animal , Criação de Animais Domésticos , Animais , Bovinos , Galinhas , História do Século XX , História do Século XXI , Humanos , Suínos , Perus
8.
Proc Natl Acad Sci U S A ; 116(11): 4893-4898, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804199

RESUMO

Green water--rainfall over land that eventually flows back to the atmosphere as evapotranspiration--is the main source of water to produce food, feed, fiber, timber, and bioenergy. To understand how freshwater scarcity constrains production of these goods, we need to consider limits to the green water footprint (WFg), the green water flow allocated to human society. However, research traditionally focuses on scarcity of blue water--groundwater and surface water. Here we expand the debate on water scarcity by considering green water scarcity (WSg). At 5 × 5 arc-minute spatial resolution, we quantify WFg and the maximum sustainable level to this footprint (WFg,m), while accounting for green water requirements to support biodiversity. We then estimate WSg per country as the ratio of the national aggregate WFg to the national aggregate WFg,m We find that globally WFg amounts to 56% of WFg,m, and overshoots it in several places, for example in countries in Europe, Central America, the Middle East, and South Asia. The sustainably available green water flows in these countries are mostly or fully allocated to human activities (predominately agriculture and forestry), occasionally at the cost of green water flows earmarked for nature. By ignoring limits to the growing human WFg, we risk further loss of ecosystem values that depend on the remaining untouched green water flows. We emphasize that green water is a critical and limited resource that should explicitly be part of any assessment of water scarcity, food security, or bioenergy potential.


Assuntos
Biocombustíveis , Alimentos , Chuva , Recursos Hídricos , Madeira , Geografia , Humanos
9.
Environ Sci Technol ; 52(24): 14508-14518, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30428259

RESUMO

Driven by biofuel policies, which aim to reduce greenhouse gas (GHG) emissions and increase domestic energy supply, global production and consumption of bioethanol have doubled between 2007 and 2016, with rapid growth in corn-based bioethanol in the U.S. and sugar cane-based bioethanol in Brazil. Advances in crop yields, energy use efficiency in fertilizer production, biomass-to-ethanol conversion rates, and energy efficiency in ethanol production have improved the energy balance and GHG emission reduction potential of bioethanol. In the current study, the water, energy, and carbon footprints of bioethanol from corn in the U.S. and sugar cane in Brazil were assessed. The results show that U.S. corn bioethanol has a smaller water footprint (541 L water/L bioethanol) than Brazilian sugar cane bioethanol (1115 L water/L bioethanol). Brazilian sugar cane bioethanol has, however, a better energy balance (17.7 MJ/L bioethanol) and smaller carbon footprint (38.5 g CO2e/MJ) than U.S. bioethanol, which has an energy balance of 11.2 MJ/L bioethanol and carbon footprint of 44.9 g CO2e/MJ. The results show regional differences in the three footprints and highlight the need to take these differences into consideration to understand the implications of biofuel production for local water resources, net energy production, and climate change mitigation.


Assuntos
Pegada de Carbono , Água , Biocombustíveis , Brasil , Efeito Estufa
10.
Environ Res Lett ; 12(4): 044007, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32849911

RESUMO

Future freshwater supply, human water demand, and people's exposure to water stress are subject to multiple sources of uncertainty, including unknown future pathways of fossil fuel and water consumption, and 'irreducible' uncertainty arising from internal climate system variability. Such internal variability can conceal forced hydroclimatic changes on multi-decadal timescales and near-continental spatial-scales. Using three projections of population growth, a large ensemble from a single Earth system model, and assuming stationary per capita water consumption, we quantify the likelihoods of future population exposure to increased hydroclimatic deficits, which we define as the average duration and magnitude by which evapotranspiration exceeds precipitation in a basin. We calculate that by 2060, ~31%-35% of the global population will be exposed to >50% probability of hydroclimatic deficit increases that exceed existing hydrological storage, with up to 9% of people exposed to >90% probability. However, internal variability, which is an irreducible uncertainty in climate model predictions that is under-sampled in water resource projections, creates substantial uncertainty in predicted exposure: ~86%-91% of people will reside where irreducible uncertainty spans the potential for both increases and decreases in sub-annual water deficits. In one population scenario, changes in exposure to large hydroclimate deficits vary from -3% to +6% of global population, a range arising entirely from internal variability. The uncertainty in risk arising from irreducible uncertainty in the precise pattern of hydroclimatic change, which is typically conflated with other uncertainties in projections, is critical for climate risk management that seeks to optimize adaptations that are robust to the full set of potential real-world outcomes.

11.
Sci Total Environ ; 569-570: 1282-1288, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27387812

RESUMO

We estimate the consumptive water footprint (WF) of electricity and heat in 2035 for the four energy scenarios of the International Energy Agency (IEA) and a fifth scenario with a larger percentage of solar energy. Counter-intuitively, the 'greenest' IEA scenario (with the smallest carbon footprint) shows the largest WF increase over time: an increase by a factor four over the period 2010-2035. In 2010, electricity from solar, wind, and geothermal contributed 1.8% to the total. The increase of this contribution to 19.6% in IEA's '450 scenario' contributes significantly to the decrease of the WF of the global electricity and heat sector, but is offset by the simultaneous increase of the use of firewood and hydropower. Only substantial growth in the fractions of energy sources with small WFs - solar, wind, and geothermal energy - can contribute to a lowering of the WF of the electricity and heat sector in the coming decades. The fifth energy scenario - adapted from the IEA 450 scenario but based on a quick transition to solar, wind and geothermal energy and a minimum in bio-energy - is the only scenario that shows a strong decline in both carbon footprint (-66%) and consumptive WF (-12%) in 2035 compared to the reference year 2010.

12.
Environ Int ; 94: 211-223, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27262784

RESUMO

The study assesses green and blue water footprints (WFs) and virtual water (VW) trade in China under alternative scenarios for 2030 and 2050, with a focus on crop production, consumption and trade. We consider five driving factors of change: climate, harvested crop area, technology, diet, and population. Four scenarios (S1-S4) are constructed by making use of three of IPCC's shared socio-economic pathways (SSP1-SSP3) and two of IPCC's representative concentration pathways (RCP 2.6 and RCP 8.5) and taking 2005 as the baseline year. Results show that, across the four scenarios and for most crops, the green and blue WFs per tonne will decrease compared to the baseline year, due to the projected crop yield increase, which is driven by the higher precipitation and CO2 concentration under the two RCPs and the foreseen uptake of better technology. The WF per capita related to food consumption decreases in all scenarios. Changing to the less-meat diet can generate a reduction in the WF of food consumption of 44% by 2050. In all scenarios, as a result of the projected increase in crop yields and thus overall growth in crop production, China will reverse its role from net VW importer to net VW exporter. However, China will remain a big net VW importer related to soybean, which accounts for 5% of the WF of Chinese food consumption (in S1) by 2050. All scenarios show that China could attain a high degree of food self-sufficiency while simultaneously reducing water consumption in agriculture. However, the premise of realizing the presented scenarios is smart water and cropland management, effective and coherent policies on water, agriculture and infrastructure, and, as in scenario S1, a shift to a diet containing less meat.


Assuntos
Produção Agrícola , Abastecimento de Água , China , Clima , Dieta , Abastecimento de Alimentos , Humanos , Densidade Demográfica , Tecnologia
13.
Water Res ; 94: 73-85, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26938494

RESUMO

Previous studies into the relation between human consumption and indirect water resources use have unveiled the remote connections in virtual water (VW) trade networks, which show how communities externalize their water footprint (WF) to places far beyond their own region, but little has been done to understand variability in time. This study quantifies the effect of inter-annual variability of consumption, production, trade and climate on WF and VW trade, using China over the period 1978-2008 as a case study. Evapotranspiration, crop yields and green and blue WFs of crops are estimated at a 5 × 5 arc-minute resolution for 22 crops, for each year in the study period, thus accounting for climate variability. The results show that crop yield improvements during the study period helped to reduce the national average WF of crop consumption per capita by 23%, with a decreasing contribution to the total from cereals and increasing contribution from oil crops. The total consumptive WFs of national crop consumption and crop production, however, grew by 6% and 7%, respectively. By 2008, 28% of total water consumption in crop fields in China served the production of crops for export to other regions and, on average, 35% of the crop-related WF of a Chinese consumer was outside its own province. Historically, the net VW within China was from the water-rich South to the water-scarce North, but intensifying North-to-South crop trade reversed the net VW flow since 2000, which amounted 6% of North's WF of crop production in 2008. South China thus gradually became dependent on food supply from the water-scarce North. Besides, during the whole study period, China's domestic inter-regional VW flows went dominantly from areas with a relatively large to areas with a relatively small blue WF per unit of crop, which in 2008 resulted in a trade-related blue water loss of 7% of the national total blue WF of crop production. The case of China shows that domestic trade, as governed by economics and governmental policies rather than by regional differences in water endowments, determines inter-regional water dependencies and may worsen rather than relieve the water scarcity in a country.


Assuntos
Agricultura , Clima , Comércio , Produtos Agrícolas/crescimento & desenvolvimento , Recursos Hídricos , China , Conservação dos Recursos Naturais
14.
Sci Adv ; 2(2): e1500323, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26933676

RESUMO

Freshwater scarcity is increasingly perceived as a global systemic risk. Previous global water scarcity assessments, measuring water scarcity annually, have underestimated experienced water scarcity by failing to capture the seasonal fluctuations in water consumption and availability. We assess blue water scarcity globally at a high spatial resolution on a monthly basis. We find that two-thirds of the global population (4.0 billion people) live under conditions of severe water scarcity at least 1 month of the year. Nearly half of those people live in India and China. Half a billion people in the world face severe water scarcity all year round. Putting caps to water consumption by river basin, increasing water-use efficiencies, and better sharing of the limited freshwater resources will be key in reducing the threat posed by water scarcity on biodiversity and human welfare.


Assuntos
Água Doce , Abastecimento de Água , Biodiversidade , China , Conservação dos Recursos Naturais , Ingestão de Líquidos , Água Potável , Humanos , Índia , Rios , Estações do Ano
15.
Environ Sci Technol ; 49(21): 12860-8, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26440220

RESUMO

This is the first global assessment of nitrogen-related water pollution in river basins with a specification of the pollution by economic sector, and by crop for the agricultural sector. At a spatial resolution of 5 by 5 arc minute, we estimate anthropogenic nitrogen (N) loads to freshwater, calculate the resultant gray water footprints (GWFs), and relate the GWFs per river basin to runoff to calculate the N-related water pollution level (WPL) per catchment. The accumulated global GWF related to anthropogenic N loads in the period 2002-2010 was 13×10(12) m3/y. China contributed about 45% to the global total. Three quarters of the GWF related to N loads came from diffuse sources (agriculture), 23% from domestic point sources and 2% from industrial point sources. Among the crops, production of cereals had the largest contribution to the N-related GWF (18%), followed by vegetables (15%) and oil crops (11%). The river basins with WPL>1 (where the N load exceeds the basin's assimilation capacity), cover about 17% of the global land area, contribute about 9% of the global river discharge, and provide residence to 48% of the global population.


Assuntos
Água Doce/química , Nitrogênio/análise , Poluição da Água/análise , Agricultura , China , Produtos Agrícolas , Monitoramento Ambiental , Rios , Poluentes Químicos da Água/análise
16.
PLoS One ; 7(2): e32688, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22393438

RESUMO

Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996-2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity--as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins--can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption.


Assuntos
Água Doce , Abastecimento de Água , Conservação dos Recursos Naturais , Ecologia , Monitoramento Ambiental/métodos , Geografia , Saúde Global , Humanos , Saúde Pública , Rios , Guerra
17.
Proc Natl Acad Sci U S A ; 109(9): 3232-7, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331890

RESUMO

This study quantifies and maps the water footprint (WF) of humanity at a high spatial resolution. It reports on consumptive use of rainwater (green WF) and ground and surface water (blue WF) and volumes of water polluted (gray WF). Water footprints are estimated per nation from both a production and consumption perspective. International virtual water flows are estimated based on trade in agricultural and industrial commodities. The global annual average WF in the period 1996-2005 was 9,087 Gm(3)/y (74% green, 11% blue, 15% gray). Agricultural production contributes 92%. About one-fifth of the global WF relates to production for export. The total volume of international virtual water flows related to trade in agricultural and industrial products was 2,320 Gm(3)/y (68% green, 13% blue, 19% gray). The WF of the global average consumer was 1,385 m(3)/y. The average consumer in the United States has a WF of 2,842 m(3)/y, whereas the average citizens in China and India have WFs of 1,071 and 1,089 m(3)/y, respectively. Consumption of cereal products gives the largest contribution to the WF of the average consumer (27%), followed by meat (22%) and milk products (7%). The volume and pattern of consumption and the WF per ton of product of the products consumed are the main factors determining the WF of a consumer. The study illustrates the global dimension of water consumption and pollution by showing that several countries heavily rely on foreign water resources and that many countries have significant impacts on water consumption and pollution elsewhere.


Assuntos
Água Doce , Atividades Humanas , Irrigação Agrícola/estatística & dados numéricos , Agricultura/estatística & dados numéricos , Comércio/estatística & dados numéricos , Conservação dos Recursos Naturais/estatística & dados numéricos , Países Desenvolvidos/estatística & dados numéricos , Países em Desenvolvimento/estatística & dados numéricos , Alimentos , Atividades Humanas/estatística & dados numéricos , Humanos , Indústrias/estatística & dados numéricos , Chuva , Movimentos da Água , Poluição da Água/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...